Process of Organic matter Decomposition. https://cststudy.blogspot.com |
Organic matter Decomposition
The organic materials (plant and animal residues)
incorporated in the soil is attacked by a variety of microbes, worms, and
insects in the soil if the soil is moist. Some of the constituents are
decomposed very rapidly, some less readily and others very slowly.
The list of
constituents in terms of ease of decomposition
- Sugars, starches and simple proteins → Rapid Decomposition
- Crude proteins.
- Hemicelluloses.
- Cellulose.
- Fats, waxes, resins.
- Lignin → Very slow Decomposition.
The organic matter is also classified on the basis of their
rate of decomposition
- Rapidly decomposed: Sugars, starches, proteins etc.
- Less rapidly decomposed: Hemicelluloses, celluloses etc.
- Very slowly decomposed: Fats, waxes, resins, lignins etc.
- Simple decomposition products, Aerobic – CO2, H2O, NO2, SO4.
When organic material is added to soil, three general
reactions take place.
a. The bulk of the material undergoes enzymatic
oxidation with CO2, water, energy and heat as the major products
b.
The essential elements such as N, P and S are
released and or immobilized by a series of reactions.
(A) Decomposition of Soluble Substances
Sugar and water-soluble nitrogenous compounds are the first
to be decomposed as they offer a very readily available source of carbon,
nitrogen, and energy for the microorganisms. Thus, when glucose is decomposed
under aerobic conditions, the reaction is as under:
Sugar + Oxygen → CO2
+ H2O
Under partially oxidized conditions,
Sugar + Oxygen →
Aliphatic acid (Acetic, formic etc.)
Or,
Hydroxy acids
(Citric, lactic etc.)
Or,
Alcohols (ethyl alcohol
etc.)
Some of the reactions invoiced may be represented as under:
C6H12O6+
2O2 → 2CH3COOH + 2CO2 + 2H2O
2 C6H12O6
+ 3O2 → 2 C6H8O7+ 4 H2O
C6H12O6
+ 2O2 → 2C2H5OH + 2CO2
(i) Ammonification
Soluble nitrogenous compounds like amino acids, amides,
ammonium compounds, nitrates etc., are also attacked by the microorganisms. The
transformation of organic nitrogenous compounds into ammonia is called
ammonification. During the course of action under aerobic conditions by
heterotrophic organisms, oxygen is taken up and carbon dioxide is
released. Ammonification process
involves a gradual simplification of complex compounds.
Protein → polypeptides → amino acids → ammonia or ammonium
salts.
Or
Organic nitrogen → NH3
The ammonification occurs as a result of the action of
enzymes produced by microorganisms.
Their action is chiefly hydrolytic and oxidative (in the presence of
air).
(ii) Nitrification
The process of conversion of ammonia to nitrite (NO2)
and then to nitrate (NO3) is known as nitrification. The production
of nitrate is more rapid than that of nitrite, while the formation of ammonia
is the slowest process. That is why soil usually contains more nitrate nitrogen
than nitrite at any time. Nitrification is an aerobic process involving the
production of nitrates from ammonium salts.
(iii) Denitrification
The process, which involves the conversion of soil nitrate
into gaseous nitrogen or nitrous oxide, is called Denitrification. Waterlogging
and high pH will increase N loss by Denitrification.
Waterlogging (e.g., Rice field) and high pH will increase
nitrogen loss by denitrification.
(B) Decomposition of Insoluble Substances
1. Breakdown of Protein: Proteins are complex organic
substances containing nitrogen, sulfur, and sometimes phosphorus, in addition
to carbon, hydrogen, and oxygen. During the course of decomposition of plant
materials, the proteins are first hydrolyzed to a number of intermediate
products, e.g., proteases, peptones, peptides, etc., as polypeptides. The
changes may be represented as under:
The process of conversion of proteins to amino acids is
known as aminization.
(2) Breakdown of Cellulose: Cellulose is the most
abundant carbohydrate present in plant residues. The microorganisms break up
cellulose into cellobiose and glucose. Glucose is further attacked by organisms
and converted into organic acids:
The decomposition of cellulose in acid soils proceeds more
slowly than in neutral and alkaline soils. It is quite rapid in well aerated
soils and comparatively slow in those poorly aerated.
(3) Breakdown of
Hemicellulose: to microbial decomposition, hemicelluloses are first
hydrolyzed to their component sugars and uranic acids. The sugars are further
attacked by microorganisms. They are converted to organic acids, alcohols, and
water. The uranic acids are broken down to pentose and carbon dioxide. The
newly synthesized Hemicelluloses thus form a part of the hummus. Hemicelluloses
decompose faster than cellulose.
(4) Breakdown of Starch: Chemically it is a glucose
polymer. It is first hydrolyzed to maltose by the action of enzymes (amylases).
Maltose is next converted to glucose by another enzyme (maltase). Glucose is
soluble in water is utilized for growth and other metabolic activities.
(C) Decomposition of Ether-soluble substances
Fats is first broken down by microorganisms through the
agency of enzyme lipase into glycerol and fatty acids. Glycerol is next
oxidized to organic acids which along with the other fatty acids are finally
oxidized to carbon dioxide and water.
(D) Decomposition of Lignin
Lignin is deposited on the cell wall to impart strength to
the framework of the plant. Lignin decomposes slowly, much slower than
cellulose. Complete oxidation of lignin gives rise to carbon dioxide and water.
(E) Simple Decomposition Products
As the enzymic changes of the soil organic matter proceed,
simple products begin to manifest themselves. Some of these especially carbon
dioxide and water, appear immediately. Others such as nitrate-nitrogen,
accumulate only after the peak of the vigorous decomposition is over. The more common simple products resulting
from the activity of the soil microorganisms are as follows:
Carbon: CO2, CO32,
HCO3, CH4, C
Nitrogen: NH4+, NO2, NO3, N2 (gas)
Sulfur: S, H2S, SO32, SO42, CS2
Phosphorus: H2PO4, HPO42
Others: H2O, O2, H2, H+, OH, K+, Ca2+, Mg2+ etc.
(F) Mineralization of Organic Sulphur
Many organic compounds especially those of nitrogenous
nature, carry sulphur. Heterotrophic bacteria simplify the complex organic compounds,
then autotrophic bacteria (sulfur bacteria) oxidize it into sulfate form.
(G) Mineralization of Organic Phosphorus
A large proportion of the soil phosphorus is carried in
organic combinations. Upon attack by microorganisms, the organic phosphorus compounds
are mineralized; that is, they are changed to inorganic combinations. It
depends upon soil pH. As the pH goes up from 5.5 to 7.5 the available
phosphorus changes from H2PO4 to HPO42. Both of these forms are available to
higher plants.
Comments
Post a Comment